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We demonstrate the existence of self-consistent Bloch modes in resonant nonlinear photonic crystals with a
complex, intensity-dependent, and frequency-dependent dielectric function. Such a dielectric response may
arise by “doping” the photonic crystal with resonant quantum dots, atomic impurities, or other two-level light
emitters. These exact solutions of the nonlinear electromagnetic wave equation exhibit Bloch periodicity and
describe fundamental eigenmodes of an active photonic crystal under incoherent pumping. In a simple model
two-dimensional photonic crystal, doped with active two-level atoms, the optical field intensity of these waves
shows a laserlike threshold behavior with pumping. This appears to be a universal property of active, nonlinear
photonic crystals and photonic band gap materials, arising from multidirectional distributed feedback. We
describe an iterative technique for computing the detailed properties of these exact, self-consistent nonlinear
waves in strongly scattering photonic crystal architectures with regions of gain and loss.
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I. INTRODUCTION

Photonic band gap �PBG� materials �1,2� are artificial pe-
riodic dielectrics that enable the localization, trapping, and
confinement of light �1,3� on the wavelength scale. In the
absence of disorder and for linear dielectric constants that are
typically real, positive, and frequency independent, the solu-
tions to Maxwell’s equations within the photonic crystal
�PC� satisfy Bloch’s theorem �4�. These Bloch modes can be
efficiently represented as a plane wave expansion �5�. Opti-
mized photonic band gap materials have a solid dielectric
backbone with typical volume fraction of less than 25%. Im-
portant phenomena arise when the photonic crystal void re-
gions are infiltrated with active, nonlinear materials, or when
the PC backbone is doped with resonant nonlinear atoms or
quantum dots �6–11�. These phenomena include laser activ-
ity and nonlinear switching effects �12–20�. In these situa-
tions, computational methods are required to quantitatively
describe the effects of complex, frequency dependent, and
nonlinear dielectric response in a strongly scattering periodic
medium. This is especially important when nonlinear effects
modify the underlying photonic band structure and electro-
magnetic wave equations. The resulting solutions of the non-
linear wave equation must be self-consistently determined.

In this paper we introduce a self-consistent iterative tech-
nique to describe electromagnetic modes in a strongly scat-
tering periodic microstructure with resonant nonlinearities
and complex frequency-dependent dielectric functions. In
this medium, the imaginary part of the nonlinear dielectric
function can be either positive or negative, coresponding to
absorption or gain in specific regions of the PC. The PC can
also be uniformly pumped �electrically or optically� by an
external power source. Under suitable pumping conditions,
we demonstrate the existence of exact solutions of the non-
linear wave equation, in such a medium, satisfying Bloch’s
theorem. These nonlinear waves typically require a threshold
pumping condition in order to overcome absorption losses.

They correspond to a specific number of “photons” �field
energy� per unit cell of the PC for a specific value of the
pump and the complex nonlinear dielectric profile. If the
photon number per unit cell falls below the required value,
the eigenfrequency of the nonlinear wave acquires an imagi-
nary part leading to temporal amplification of the field am-
plitude. Self-consistent, steady state solutions occur only for
a specific wave amplitude. This behavior is characteristic of
laserlike field oscillations that have been observed at photo-
nic band edges �20�. At a photonic band edge, slow group
velocity �21,22� and multidirectional distributed feedback
�20� contribute to self-consistent nonlinear oscillation in the
presence of loss. We find, very strikingly, that self-consistent,
steady state nonlinear Bloch wave solutions can occur at any
point in the photonic band structure and are not restricted to
photonic band edges.

We illustrate the nature of nonlinear Bloch waves in three
physical systems of resonantly doped two-dimensional �2D�
photonic crystals with small overall damping coefficients. In
the first we consider a silicon PC with an added gain region
consisting of erbium-doped silica. In this case the dopant
atoms provide only a very weak perturbation to the back-
ground frequency-independent dielectric function of the
silica-silicon host material. Here the number of photons per
unit cell in the self-consistent nonlinear Bloch waves re-
mains relatively small for pumping levels just above thresh-
old for steady state oscillation. The second and third illustra-
tions consider much larger nonlinear perturbations caused by
resonant doping. In these cases, we study a dense coating of
colloidal quantum dots on the interior surfaces of a silicon
PC containing a square lattice of holes. We consider both a
thin coating and a thick coating of close packed PbS quan-
tum dots each capped by a thin polymer shell. In these cases,
the nonlinear Bloch waves have considerably larger ampli-
tude than the case of erbium-doped silica and self-consistent
steady state oscillation survives in the presence of larger
background losses.

In addition to the physical systems described above, our
methodology for describing complex, nonlinear photonic
crystals is relevant to a variety of other problems of current
interest. For example, distributed feedback lasers �23� con-*Electronic address: akaso@physics.utoronto.ca
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structed from relatively weak scattering Bragg gratings are
described by an approximate coupled mode analysis �24�.
This description is accurate in the limit of a very small 1D
photonic stop gap. Our exact method can treat very strongly
scattering periodic microstructures in 1D, 2D, and 3D con-
taining high or low gain concentrations. Our nonlinear Bloch
wave analysis provides a quantitative and predictive tool for
the characteristics of future lasers based on strongly scatter-
ing PBG materials. Recently, optical gain and stimulated
emission have been reported in periodic nanopatterned crys-
talline silicon �12�. Here lasing is attributed to electron-hole
direct recombination centers on the interior surfaces of the
nanopatterned silicon. The question of efficient silicon based
lasers is of enormous technological importance. In a silicon
PBG material �with patterning on the larger scale of roughly
600 nm� distributed feedback effects may lead to nonlinear
Bloch waves of the type discussed in this paper. A third
possible realization of nonlinear Bloch waves is in electri-
cally pumped metallic photonic crystal filaments. In
tungsten-based filaments, fabricated in a woodpile PBG ar-
chitecture �25�, it has been reported �26,27� that thermal light
emission exhibits characteristics very distinct from a stan-
dard blackbody radiator. Peaks in thermal light emission
have been observed �28� at frequencies corresponding to
structural features of the underlying photonic crystal. In the
case of strong electrical pumping, light emission intensity at
these frequencies exceeds that of a blackbody at roughly the
same temperature. Unlike previous examples, where the light
emitters are concentrated in a narrow frequency range, the
metallic photonic crystal filament can be modeled �29� using
a very broad distribution of two-level emitters. This is an
active nonlinear medium with a complex frequency-
dependent dielectric function. In this case, the emergence of
nonlinear Bloch waves at particular frequencies may provide
a basis for enhanced light emission from the filament.

Our iterative method for obtaining exact, self-consistent
nonlinear modes in strongly scattering PC’s supercedes ear-
lier attempts to describe photonic band structure in
frequency-dependent dielectrics. In 2D PC’s with a simple
analytical expression for the frequency-dependent dielectric
function, the finite-difference time domain method and other
specialized methods have proved useful in obtaining linear
band structure �30–36�. More generally for 3D PC’s and
completely general forms of the frequency-dependent dielec-
tric function, the so-called “cutting surface method” �CSM�
was introduced �37�. However, neither the CSM nor the pre-
ceding approaches are capable of describing active, nonlinear
photonic crystals with a complex dielectric constant.

In Sec. II of this paper we introduce the three specific
illustrative models to which we apply our self-consistent it-
erative approach to nonlinear photonic band structure. Each
of these systems exhibits nonlinear Bloch waves for suitable
pumping. In Sec. III of this paper we establish the nonlinear
integral equation for the self-consistent Bloch modes of the
doped PC and the Green’s function kernel of the backbone
photonic crystal �BPC�. In Sec. IV A we provide diagnostics
for our integral equation method by applying it to the simple
situation in which one of the dielectric constituents of the
BPC is trivially “doped” with an additional dielectric that
exhibits purely linear, frequency-independent optical re-

sponse. In Sec. IV B we apply our method to the case of a
dopant dielectric exhibiting a real and frequency-dependent
susceptibility. In this case, we demonstrate that our iterative
method based on the integral equation formulation more ef-
ficiently recaptures the results obtained with established
techniques such as the CSM �37�. If the susceptibility of the
dopant atoms is complex, frequencies for the field inside the
PC may also be complex. Such modes either grow or decay
exponentially with time. The rate of decay or growth is set
by the photon density and a pump parameter, �, both of
which enter the nonlinear optical susceptibility of the atomic
system. In the case of electrically insulating materials, this
pumping may arise from an external incoherent light source
that illuminates the volume of the photonic crystal. In the
case of electrically conducting photonic crystals the param-
eter, �, may be related to electrical pumping. In either case,
we introduce a small damping �positive imaginary part of the
background dielectric constant� over and above the resonant
susceptibility. The combination of pumping and damping en-
ables steady state, self-consistent Bloch modes to emerge. In
Sec. V we observe how the self-consistent Bloch mode am-
plitude depends on the incoherent pumping rate for the case
of homogeneously broadened dopant atoms, when only a
single mode within the composite PC is spontaneously ex-
cited. In this situation we identify the occurrence of a non-
linear eigenmode of the photonic crystal with Bloch-mode
characteristics. As a function of incoherent pumping, the
self-consistent amplitude of this periodic nonlinear oscilla-
tion exhibits characteristics of a laser mode.

II. MODELS OF RESONANT NONLINEAR
PHOTONIC CRYSTALS

Radiation relaxation of an excited two-level quantum sys-
tem in the electric dipole approximation depends on two fac-
tors. The first is the matrix element for the electric dipole
transition between the excited and the relaxed state of the
system and the second is the density of radiation modes
through which this radiation can escape. The density of ra-
diation modes can be engineered with the help of PBG ma-
terials. Modified properties for electromagnetic modes in a
PC are expected if resonant systems �atoms, quantum dots,
quantum wells, etc.� within the PC are subjected to local
electromagnetic density of states modification �20,38–40�. In
this paper we introduce a self-consistent field method that
can quantitatively describe extended Bloch modes in the
presence of a variety of such phenomena. To illustrate our
computational method we consider three situations.

�a� A square lattice of cylindrical silicon �Si� rods where
the space between the rods is filled with glass �SiO2� of
dielectric constant �b=2.1. The lattice constant is a, the ra-
dius of the rods is r=0.3a, and their dielectric constant �a
=12.1. The glass is uniformly doped with erbium triply ion-
ized atoms �Er3+� which under a suitable pumping represent
our radiative system. A schematic view of the unit cell of this
PC is presented in Fig. 1�a�.

�b� A square lattice of cylindrical air pores etched in sili-
con matrix �Si� of dielectric constant �b=12.1. The lattice
constant is a, the radius of the pores is r=0.45a, and their
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dielectric constant �a=1.0. The inner surface of air pores is
coated with close packed colloidal quantum dots. The thick-
ness of the coating shell is �=0.04a. Quantum dots under a
suitable pumping represent our active medium. A schematic
view of the unit cell of this PC is presented in Fig. 1�b�.

�c� The photonic structure is the same as the one de-
scribed in �b� but now the radiative coating brings a substan-
tial contribution to the overall photonic band structure, due
to a larger coating thickness and the higher number of reso-
nant quantum dots. In the following, for the sake of the ar-
gument, we focus on the case �a�. Numerical results for all
three cases are presented in Sec. VI.

We refer to the part of the PC consisting of silicon rods
and glass matrix as the BPC. We assume that the dopant
atoms are uniformly distributed in the glass regions with the
same average spatial periodicity as the host BPC. If a mac-
roscopic number of dopant atoms is considered �e.g., NT
�1019 cm−3, where NT is the volumetric density of the dop-
ant atoms� we may expect that their presence will influence
both the frequency distribution and the nature of the electro-
magnetic eigenmodes in the PC. To numerically investigate
these effects, we introduce an iterative self-consistent optical
field method based on an integral equation formulation of
Maxwell’s equation with a nonlinear dielectric. In this inte-
gral equation, the influence of the BPC is evaluated through
a Green’s function kernel �propagator� and is separated from
the influence of the dopant atoms. The active, nonlinear di-
electric component, on the other hand, appears as a self-
consistent potential in the integral equation. At each iterative
step, the normalized eigenmodes and �real� frequencies are
updated by the results of the previous iteration until the out-
put eigenfrequency coincides with the input frequency ap-
pearing in the self-consistent potential.

The convergence of this iterative algorithm is analogous
to the Hartree-Fock method in solid state physics. Unlike the
Hartree-Fock solution, in many electron systems, the self-
consistent Bloch-mode solution that we obtain is an exact
solution of the nonlinear wave equation in the photonic crys-
tal. The electromagnetic eigenmodes of the BPC constitute

the “unperturbed” system while the periodic distribution of
the dopant atoms is the “perturbation.” At each iteration, the
influence of the perturbation from the previous iteration is
used to update the normal modes of the system. On the other
hand, the perturbation itself is chosen self-consistently by
adjusting the nonlinear dielectric response to correspond to a
specific number of photons per unit cell of the PC. Finally
the number of photons per unit cell must be adjusted to yield
eigenmodes with a real frequency that neither grow nor de-
cay exponentially. We do not impose any limitation on the
strength of the perturbation except for the strict requirement
that the real part of the total dielectric constant of the com-
bined system �BPC plus dopant atoms� be positive at all
frequencies. This restriction is not fundamental to the under-
lying physics, rather it is respected in order to achieve rapid
convergence. While the language used is the same as that
used in the quantum perturbation theory, the method used is
not an approximate one. The strength of the perturbation in
our method simply alters the computational time required to
reach the exact solution.

The effect of dopant atoms on the radiation modes is a
frequency shift of the modes able to freely propagate into the
doped PC. Dopant atoms respond to the local field by scat-
tering and absorbing or amplifying it. This response is cap-
tured by the �ensemble averaged, nonlinear� susceptibility.
Two important parameters enter the susceptibility: T1, the
depopulation time of the excited level and T2, the dephasing
time of the electric dipole moment of the excited atomic
system. For simplicity we consider only the modes with elec-
tric field polarized perpendicular to the plane of the 2D BPC
�TM modes�. In our model we make two further assumptions
for the sake of computational simplicity.

�1� The resonance frequency of the dopant atoms is the
same for all dopant atoms �crystal-field Stark shift of the
resonant frequency leading to inhomogeneous line broaden-
ing is ignored�. This resonance frequency is independent of
the strength of the radiation field established in PC. These
assumptions are not required for the application of our
method of analysis. They provide computational simplicity
for the purpose of illustration.

FIG. 1. �Color online� �a� Unit cell of the square lattice of silicon �Si, �a=12.1� cylindrical rods �radius r=0.3a� in glass matrix
�SiO2, �b=2.1�. Dots �red online� represent the uniform distribution �random� of the dopant atoms within the glass component. �b� Unit cell
of the square lattice of air cylindrical pores �radius r=0.45a, �a=1.0� etched in silicon matrix �Si, �b=12.1�. Light �red online� regions
represent the coating of the silicon matrix with close packed colloidal quantum dots. The thickness of the coated shell is 0.04a. The average,
frequency-independent dielectric constant of the coating is �c=6.0. �c� The same as �b� but now the coating has a thickness 0.12a.
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�2� T1 and T2 are assumed to be independent of frequency
and applied fields. In general, the rate of population relax-
ation, T1

−1, is the sum of contributions from radiative and
nonradiative processes. In material systems where lumines-
cence is observed, the rate of radiative decay, T1,rad

−1, is sig-
nificant compared to the rate of nonradiative decay,
T1,nonrad

−1. In photonic crystals with a PBG or even a signifi-
cant suppression in the 3D electromagnetic density of states
�DOS�, T1,rad may vary with frequency according to the fre-
quency dependence of the DOS �6�. When the frequency
variation of the DOS is sufficiently rapid, non-Markovian
memory effects may appear in the radiative dynamics and a
more elaborate description is required �41�. Within a com-
plete PBG T1,rad

−1 may vanish �38,42�. However, for a col-
lection of proximal light emitters, depopulation of the ex-
cited state of any given emitter may occur through the higher
order radiative process of resonance dipole-dipole interaction
�40�. If transfer of energy �sometimes called Forster energy
transfer� exceeds T1,nonrad

−1, then entirely new forms of reso-
nant nonlinear optical response may arise �43–45�. While our
iterative technique for evaluating self-consistent Bloch
modes can describe the dramatic effects of a 3D PBG, we
choose to illustrate our method here using the simpler con-
text of 2D photonic crystals. In 2D PCs, the local and total
3D electromagnetic DOS remains similar to the DOS of free
space �46�. In this case we assume frequency and intensity
independent T1 and T2. Soft collisions �e.g., elastic phonon-
dopant atom collisions� are responsible for T2, and we expect
them to remain unaffected by the presence of the PC.

In the event of the population inversion of the dopant
atoms, resonant electromagnetic waves propagating through
the PC may experience gain. The amplitude of the field is
limited due to power broadening of the atomic resonance and
eventual gain saturation �47,48�. In our method, power
broadening is iteratively fed back to the dielectric constant of
the PC through the nonlinear, intensity-dependent suscepti-
bility of the dopant atoms. When the photon density is read-
justed to yield a purely real output frequency, self-consistent
extended Bloch modes appear. We refer to these self-
consistent Bloch modes as “nonlinear eigenmodes” of the
active PC and we refer to our method as the nonlinear eigen-
modes method.

III. PHOTON PROPAGATOR FOR THE PASSIVE
BACKBONE PHOTONIC CRYSTAL

In this section, we introduce the Green function of the
BPC, that describes the frequency-independent part �BPC� of
the system separately from the frequency- and field-
dependent perturbation. This separation leads to computa-
tional efficiency by limiting the iterative, self-consistent field
calculation to the frequency-dependent and nonlinear part of
the material. In this approach we obtain an exact solution to
the band structure of complex, nonlinear, frequency-
dependent dielectrics in an iterative way.

In a two-dimensional photonic crystal, Maxwell’s equa-
tions for the E-polarized �electric field vector everywhere
perpendicular to the plane of periodicity� field in the pres-
ence of the dopant atoms reduce to the nonlinear wave equa-
tion

�2E��r�� +
�2

c2 ���r�� + 4����r���E��r�� = 0. �1�

Here ��r�� is the spatially dependent, frequency-independent,
real dielectric constant of the BPC, and 4����r�� represents
the complex, nonlinear, and frequency-dependent suscepti-
bility of the dopant atoms. The eigenfunctions of the BPC
satisfy

�2�k� ,l�r�� +
�k� ,l

2

c2 ��r���k� ,l�r�� � 0, �2�

where k� is a real vector of reciprocal space in the first Bril-
louin zone, l is a band index label, and �k� ,l is the dispersion
relation for the lth band of the BPC. By construction �Ap-
pendix A� the eigenmodes of the BPC are Bloch states and
can be written as

�k� ,l�r�� = eik�r�uk� ,l�r�� � eik�r��
G�

ũk� ,l�G� �eiG� r�. �3�

Here, the summation is over reciprocal lattice vectors G� , the
function uk� ,l�r�� has the periodicity of direct lattice, and eik�r� is
the Bloch phase. Since we assume ��r�� real, Eq. �2� is the
eigenvalue problem for a self-adjoint operator. It follows that

1

V
�

V

d2r�q� ,n
* �r����r���k� ,l�r�� = �q� ,k��n,l �4�

upon normalization of the eigenvectors �Appendix A�. In Eq.
�4� the integration is over the whole two-dimensional volume
V of the photonic crystal �49�.

We may represent a general electric field E��r�� at point r�
as a superposition of the complete set of Bloch fields �k� ,l�r��
�all eigenvectors of BPC�. The coefficients of this superpo-
sition are complex numbers, fk� ,l

E��r�� = �
k� ,l

fk� ,l�k� ,l�r�� . �5�

Here, the wave vector summation extends over the first Bril-
louin zone of the PC and l moves over all bands. Inserting
Eq. �5� into Eq. �1� and using Eq. �2� we obtain

�
k� ,l

fk� ,l��k� ,l
2 − �2���r���k� ,l�r�� = �24����r��E��r�� . �6�

Multiplying both sides of Eq. �6� by �q� ,n
* �r�� and integrating

over the whole photonic crystal and using Eq. �4� we obtain

fq� ,n =
1

V
�

V

d2r�
�q� ,n

* �r���

�q� ,n
4����r���E��r��� , �7a�

where

�q� ,n �
�q� ,n

2

�2 − 1. �7b�

Multiplying both sides of Eq. �7b� by �q� ,n�r�� and summing
over 	q� ,n
 we obtain the integral equation
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E��r�� =
1

V
�

V

d2r�G��r�,r���4����r���E��r��� , �8�

where

G��r�,r��� = �
q� ,l

�q� ,l�r���q� ,l
* �r���

�q� ,l
�9�

is the Green function of the BPC �50�. This BPC photon
propagator plays a role analogous to the “free-particle propa-
gator” in quantum scattering theory. Equation �8� is the ana-
log of the Lippmann-Schwinger integral equation in quantum
scattering theory �51�, where 4����r��� plays the role of a
scattering potential.

IV. PASSIVELY DOPED PHOTONIC CRYSTALS:
LINEAR EIGENMODES

An instructive application of our integral equation method
of electromagnetic band structure is in the case that the per-
turbation 4����r�� consists of the same material as the BPC.
This can be solved also by the PWE method. In Sec. IV A,
we provide a diagnostic comparison of the efficiency and
accuracy of our integral equation method using this simple
illustration. In Sec. IV B, we provide a second diagnostic
comparison to the previously introduced cutting surface
method �37� for the case of linear but frequency-dependent
dielectric perturbation.

A. Linear response to nonresonant perturbation

Consider a perturbation to the BPC consisting of nonreso-
nant atoms that form a lattice with the periodicity of the
BPC. We can write

��r�� = �
R�

�̄�r� + R� � , �10�

with R� , a translation vector of the BPC and �̄�r��, a function
different from zero only within the primitive cell of the BPC.
We seek solutions E��r�� of Eq. �1� that satisfy the Bloch
periodicity

E��r� + R� � = eiq� ·R�E��r�� , �11�

where q� is a Bloch vector from the first Brillouin zone of the
lattice. Using Eqs. �8�, �10�, and �11� we can write

E��r�� =
1

V0
�

V0

d2r�G�,q��r�,r���4��̄�r���E��r��� , �12a�

where

G�,q��r�,r��� �
1

N
�
R��

G��r� + R� ,r�� + R� ��eiq��R��−R� �

= �
l

�q� ,l
* �r����q� ,l�r��

�q� ,l
. �12b�

Here, N is the number of sites of the lattice and V0=V /N is

the 2D volume of the unit cell of the 2D lattice. In deriving
Eq. �12a� we used �4�

�
R��

ei�q�−k���R��−R� � = N�q� ,k� .

We now expand the Bloch fields in the basis of eigenfunc-
tions of the BPC by using Eq. �5�. Inserting this expansion
into Eq. �12a�, multiplying both sides of the resulting equa-
tion by �k�2,l2

* �r����r��, integrating over the whole photonic

crystal, and using the orthogonality relation Eq. �4�, we ob-
tain

fk�2,l2
= �q� ,k�2

1

�q� ,l2

�
k�1,l1

Xq� ,l2;k�1,l1
fk�1,l1

, �13a�

where

Xq� ,l2;k�1,l1
�

1

V0
�

V0

d2r��q� ,l2

* �r��4��̄�r���k�1,l1
�r�� . �13b�

Equation �13a� reveals that fk�2,l2
�0,∀ l2 if k�2�q� . Conse-

quently, the summation over k�1 can be reduced to the single
term k�1=q� . This demonstrates that any perturbation, with the
same periodicity as the BPC, couples only those eigenmodes
from different bands of the BPC with the same Bloch vector
q� . In our search for self-consistent Bloch modes, we consider
only polarization patterns that preserve the translational sym-
metry of the BPC. The eigenmodes of this active photonic
crystal corresponding to the Bloch vector q� can, therefore, be
represented as a superposition of Bloch modes of the BPC
with the same q� .

Equation �13a� can be solved as an eigenvalue equation
for the eigenfrequencies � of the perturbed BPC. Symme-
trizing Eq. �13a� by introducing the variable hq� ,l
���q� ,l /c�fq� ,l, we obtain

�
l1

Bq��l2;l1�hq� ,l1
=

c2

�2hq� ,l2
, �14a�

where

Bq��l2;l1� �
c2

�q� ,l2
�q� ,l1

��l2,l1
+ Xq� ,l2;q� ,l1

� . �14b�

The matrix Bq��l2 ; l1� is Hermitian if the function �̄�r�� is real.
Equation �14a� can be rewritten in the form of a standard
eigenvalue Hermitian equation

�
l2

Bq�
−1�l3;l2�hq� ,l2

=
�2

c2 hq� ,l3
. �15�

Clearly, Bloch eigenmodes of the BPC, with a given Bloch
vector q� but different band indices, are intermixed by the
perturbation 4���r�� with the same BPC periodicity. The new
Bloch eigenmodes for the complete PC have different fre-
quencies from the eigenfrequencies of the BPC. The new
frequencies � are the eigenmodes of Eq. �15� with the cor-
responding set of coefficients 	hq� ,l
 needed to build the new
Bloch fields Eq��r� ,�� as a superposition of the eigenmodes
�q� ,l�r�� of the BPC.
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As a diagnostic of the accuracy of the method described
so far, we calculate the photonic band structure of the BPC
described in Sec. II consisting of a square lattice of silicon
rods ��a=12.1� embedded in a glass matrix ��b=2.1�, where,
instead of doping the glass matrix with resonant atoms, we
simply substitute the glass with another passive medium with
dielectric constant �̃b=3.3. In this simple but instructive il-
lustration, the final PC band structure emerges from a single
iteration since the perturbation is neither frequency nor in-
tensity dependent. The perturbation in this illustration is

4��̄�r�� = ��̃b − �b, in glass region,

0, otherwise.
� �16�

It is instructive to compare the results of the coupled mode
�CM� integral equation method �Eqs.�12�–�15�� using the
BPC photon propagator Eq. �9� with direct application of the
PWE method to the modified structure. The comparison is
shown in Fig. 2. Here we introduce the scaled frequency
�s=�c /2�a=a /	, where a is the lattice constant and 	
�2�c /� is the vacuum wavelength.

As expected, the photonic band structure is shifted by the
dielectric modification described by Eq. �16�. For example,
the frequency of the second band at the X point for the BPC
is �s=0.266, whereas in the BPC modified according to Eq.
�16�, it becomes �s=0.237. The coupling coefficients 	hq� ,l

describing the new Bloch mode of the second band at the X
point are shown in Fig. 3. Clearly, the main contributions to
the modified Bloch mode �X point, second band� come from
the eigenmodes of the second and sixth bands of the BPC at
the same wave vector. These main contributions are � out of
phase.

Most significantly, as shown in Table I, by using only a
small number of basis modes of the BPC we are able to
accurately recapture the photonic band structure of the per-
turbed crystal. In contrast, 3000 plane waves were required
to represent the eigenmodes of the perturbed photonic crystal
to the same level of accuracy. Using a basis of BPC Bloch
modes rather than plane waves, the dimension of the matrix

TABLE I. Band structure of the square lattice of silicon cylindrical rods �r=0.3a, �a=12.1� in a glass
matrix ��b=2.1�, where the glass matrix is “perturbed” by the addition of a susceptibility 4��̄�r��= �̃b−�b,
with �̃b=3.3, is calculated using our coupled mode �CM� method. Shown in the table are the eigenfrequencies
of bands 2, 3, 4, and 10 at the X point when a number of 10, 26, 56, 156, and 301 modes of the BPC are
considered coupled from the perturbation. The frequencies of the same bands at the X point, for the square
lattice of silicon cylindrical rods �r=0.3a, �a=12.1� in a matrix of a dielectric with constant �b=3.3, calcu-
lated using the PWE method with 3000 plane waves, are shown for comparison.

Bands at the
X point PWE 3000 CM 10 CM 26 CM 56 CM 156 CM 301

2 0.237 084 0.237 156 0.237 094 0.237 089 0.237 084 0.237 084

3 0.389 059 0.389 527 0.389 142 0.389 084 0.389 063 0.389 061

4 0.463 572 0.463 972 0.463 623 0.463 599 0.463 577 0.463 574

10 0.735 350 0.739 091 0.735 919 0.735 448 0.735 361 0.735 353

FIG. 2. �Color online� �a� Photonic band structure of the square
lattice of silicon cylindrical rods �r=0.3a ,�a=12.1� in a glass ma-
trix ��b=2.1�. �b� The structure of �a� but now the glass matrix is
modified by the addition of a susceptibility 4��̄�r��= �̃b−�b, with
�̃b=3.3. Solid lines represent an exact calculation of the new struc-
ture using the PWE method with 3000 plane waves. The dots rep-
resent the calculation using our method. 156 first Bloch modes of
the BPC are considered coupled from the perturbation.

FIG. 3. �Color online� 156 first Bloch modes of the BPC �see
Fig. 2�a�� are coupled from the perturbation �read Fig. 2�b� caption�.
The coupling coefficients are hq� ,l��q� ,l /cfq� ,l. Only the first 20 of
the coupling coefficients 	hq� ,l
 for q� =X point and the second pho-
tonic band of the doped BPC are shown.
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eigenvalue problem for the modified PC is typically reduced
by two orders of magnitude.

In treating materials with nonlinear, frequency-dependent,
and complex dielectric functions, foreknowledge of the BPC
Bloch modes provides a highly efficient starting point for
self-consistent and iterative determination of optical modes
in active, nonlinear “dopant” materials. The separation of the
band structure calculation of the BPC and dopant perturba-
tion provides even more profound computational efficiency
in case of 3D, nonlinear, photonic crystals.

B. Linear, frequency-dependent response
of resonant dopant atoms

A more interesting diagnostic of our integral equation for-
mulation arises if the function �̄�r�� appearing in Eq. �13b� is
real and linear but frequency dependent. As an illustration,
we consider the susceptibility function with a resonance at
the �scaled� dimensionless frequency �0s=�0a /2�c

�̄�r�,�s� = g0
��s − �0s�


1 + ��s − �0s�2
2�a�r�� , �17a�

where the step function

�a�r�� = �0, for r� within the rods,

1, otherwise.
� �17b�

Here, �s��a /2�c where � is the frequency of light and 

�2�cT /a where T is the atomic decay time. In this model,
the eigenfrequency �, appearing in Eq. �15� also appears
nonlinearly in the scattering potential itself. As such, the ei-
genvalue problem is not solved unless the frequencies on the
left hand side and right hand side of Eq. �15� coincide.

This nonlinear eigenvalue problem is amenable to solu-
tion using a self-consistent, iterative procedure. To illustrate
the convergence of the iteration we consider the eigenmode
having a particular Bloch vector and band index �q� ,n�, for
example �q� =X, n=2�. We start the iteration by computing the
frequency of the Bloch mode of the BPC �in the absence of
frequency dependent �̄�r� ,�s� in Eq. �13b�� at this �q� ,n� po-
sition in the band structure. This provides an initial output
eigenfrequency �s that we insert in the perturbation �̄�r� ,�s�
given by Eq. �17a�, to begin the iterative process. This value
of �̄�r� ,�s� is used in Eq. �13b� to produce an updated eigen-
frequency according to Eq. �15� of the revised Bloch mode
for the same �q� ,n� position. This process is iterated until
there is almost no further change between the output eigen-
frequency in Eq. �15� and the input frequency �from the pre-
vious iteration� used in �̄. More specifically, the criterion
�s,m+1−�s,m�10−4 �where m denotes the mth iteration step�
is employed to end the iteration procedure. The iteration pro-
cedure is repeated separately for every point �q� ,n� of the
photonic band structure of the BPC, until a complete “self-
consistent” band structure is obtained. This procedure con-
verges very rapidly in most cases, as illustrated in Figs. 4�b�
and 4�c�.

To check the validity of this self-consistent approach we
compare our results with those obtained by the previously
introduced CSM �37�. The CSM is an alternative method for

solving the photonic band structure in a general periodic
structure where the dielectric function is frequency depen-
dent and linear. In the CSM, the band structure for a
d-dimensional periodic system is calculated in d+1 dimen-
sions, consisting of the d-dimensional Bloch wave-vector
space and an extra dimension labeled as �. Here � is a hypo-
thetical frequency-independent dielectric constant for some
�or all� of the PC. The physical band structure is obtained
from the intersection of the “photonic band surfaces” in d
+1 dimensions with a “cutting surface” �=���s�, where
���s� is the actual frequency-dependent dielectric function.
The CSM requires evaluation of photonic band structure
over a large continuum of choices of �. In contrast, our it-

FIG. 4. �Color online� �a� Glass matrix with dielectric constant
�b=2.1 is doped with atoms contributing a real, frequency-
dependent susceptibility �̄��s� given by Eq. �17a� with g0

=0.17,�0s=0.36,
=15 �solid blue line�. The dielectric constant of
the doped regions is positive over all frequencies and its maximum
value is within the range where a number of 156 coupled Bloch
modes of the BPC gave an excellent result as demonstrated in Sec.
III A. Two additional lines represent the frequencies of the first
band for the M point �dash-dotted black line� and the second band
for the X point �dashed red line�, respectively, as functions of the
dielectric constant of the glass regions. The intersection of the
frequency-dependent dielectric function curve with the bands
�pointed to by arrows� determines the frequencies of the new bands
at the M point and the X point. �b� and �c� show the convergence of
an iterative method for two particular cases of the positioning of the
center frequency, �0s, and different linewidths 
 of the frequency-
dependent susceptibility of the dopant atoms with regard to the
band structure of the BPC. Clearly, the convergence trajectory de-
pends sensitively on the slope of the susceptibility �solid blue line�
relative to the slope of the band �dashed red line�.
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erative process reduces the number of extraneous eigenvalue
solutions per �q� ,n� points to the number of iterations re-
quired for convergence. This is a considerable saving in
computational effort for a single band structure calculation
for a specific choice of the frequency-dependent dielectric.
CSM, on the other hand, is well suited to calculating a large
set of different band structures for different choices of the
frequency dependence of the dielectric function for a fixed
PC geometry. The parameters used in Eq. �17a� are g0
=0.17, �0s=0.36, 
=15. A positive value of g0 indicates in-
verted dopant atoms.

The agreement between the CSM and our iterative
method, for the case of linear frequency-dependent dielec-
trics, is excellent as can be seen from Fig. 5�b�. We show the
number of iterations needed to reach convergence, for the
seven lowest bands at the X point of the Brillouin zone, in
Table II. The number of iterations shown in Table II for each
�q� ,n� must be compared in the CSM to the number of points
in the hypothetical extra dimension of �. This is typically 30
points or more. In contrast, our iterative method typically
samples only a small fraction of the points considered by
CSM before converging to the final result. Most importantly,
our self-consistent iterative method, unlike the CSM, is di-
rectly applicable to nonlinear and complex, frequency-
dependent dielectrics as shown in the remainder of this pa-
per.

V. ACTIVE AND PUMPED PHOTONIC CRYSTALS:
NONLINEAR EIGENMODES

A. Nonlinear dielectric

In general the susceptibility of the dopant atoms is not
only frequency dependent, it is also complex and nonlinear

�field dependent�. Moreover, in periodic microstructures used
for laser light generation, the imaginary part of the dielectric
function may be either positive or negative for different re-
gions of the crystal and change sign depending on the pump-
ing conditions. We now consider “doping” the PC with a
collection of identical, homogeneously broadened three-level
atomic systems. Each atom is pumped from the ground state
to the third level and the third level is assumed to decay very
fast �by some nonradiative relaxation process� to the second
level. Under this assumption the atomic system effectively
behaves as a two-level system with an imposed upper level
population ��47�, p. 301�. If the first level of the atomic sys-
tem is pumped toward the third level with a pumping rate R,
it can be shown that �47,52� the susceptibility of the en-
semble of dopant atoms is

�̄dop�r�,�s� = g0
��s − �0s�
2 − i

1 + ��s − �0s�2
2
2 + � a

2�c
�2 
1
2

� + 1

�a�r�� ,

�18a�

where

g0 =
d2T2

�0�

�� − 1�
�� + 1�

NT. �18b�

Here, the step function �a�r�� is defined in Eq. �17b�, �
�RT1 is the incoherent pump parameter, T1

−1 is the popula-
tion decay rate �by either radiative or nonradiative processes�
of the second level to the ground state, and T2

−1 is the dephas-
ing rate of the atomic dipole connecting the ground state and
the second level. Also �0s��0a /2�c, �s��a /2�c, and 
i
�2�cTi /a �i=1,2� are scaled frequencies and times, d is the
electric dipole moment of the transition between the ground
state and second level of the dopant atoms, and NT is the
volumetric concentration of dopant atoms.

 � �s
�r�� �

dE�s
�r��

�
�18c�

is the position dependent Rabi frequency determined by the
coupling of the atomic dipole to a self-consistently deter-
mined �Bloch mode� coherent electric field E�s

�r�� of the PC.
In this situation, the output frequency �resulting from the
solution of the eigenvalue problem Eq. �15�� may be com-
plex. This corresponds to either an exponentially decaying or
growing field amplitude with time.

In very high quality photonic band gap materials, the ex-
ponential population decay rate, 1 /T1, may require reconsid-
eration. For example, near a 3D band edge or other sharp
jumps in local DOS, nonlocal, non-Markovian memory ef-
fects may arise �41,53,54�. A fully self-consistent treatment
in a 3D PBG material would require a more detailed descrip-
tion of non-Markovian atomic dynamics.

The imaginary part of the susceptibility for very weak
fields

FIG. 5. �Color online� Comparison of the results obtained with
our self-consistent, iterative method and these obtained by the CSM
are shown on the graph �b�. Graph �a� represents the photonic band
structure of the BPC. The enhancement of the fundamental band
gap is apparent.

TABLE II. Number of iterations needed to reach convergence
for the values of eigenfrequencies, for different bands correspond-
ing to the X point of the Brillouin first zone.

Band 1 2 3 4 5 6 7

Iterations 3 4 4 5 6 5 4
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�̄dop� �r�,�s� �
− g0

1 + ��s − �0s�2
2
2 �19�

has a full width at half maximum �FWHM� ��0s=2/
2. For
simplicity, we assume that all dopant atoms have the same
resonance frequency �0s �no inhomogeneous broadening�.
For illustration we choose the frequency �0s within the fun-
damental PBG of the backbone photonic crystal and one
FWHM from the upper band edge as shown in Fig. 6 top.

To provide a more realistic description, we include some
small background loss in the undoped part of the BPC �Fig.
1�a�, Si rods�, over and above the absorption arising from the
dopant atoms. This is described by a frequency-independent,
position-dependent, background susceptibility within the di-
electric rods

�̄loss�r�� = i
10−6

4�
�1 − �a�r��� . �20�

�̄loss can represent a variety of different loss mechanisms
including �i� absorption loss within BPC, �ii� scattering loss
into extraneous electromagnetic modes in the PC arising
from small random disorder, �iii� escape into the third dimen-
sion in the case of a 2D PC of finite thickness, and �iv�
radiation loss from other boundaries of a finite size PC. The
total, complex, frequency- and position-dependent, nonlinear
susceptibility is then given by

�̄�r�,�s� = �̄dop�r�,�s� + �̄loss�r�� . �21�

Background susceptibility may be converted to the extinction
coefficient � (defined as the spatial decay rate of the magni-
tude of the field E=E0e−�x cos�n�� /c�x−�t�). In the limit of
weak absorption loss �4��̄loss��� the extinction coefficient
becomes

� �
�

a

�s4��̄loss

n
.

Here �=n2 is the effective real dielectric constant of the pho-
tonic crystal at the scaled frequency �s. Under very weak
incoherent pumping, any initially excited, low amplitude,
electromagnetic field will decay exponentially with time.
This appears formally in our self-consistent, iterative proce-
dure �described in Sec. IV B� by setting the Rabi field �Eq.
�18c�� equal to zero in Eq. �18a�. In this linear regime, the
real part Re��s� of the complex output eigenfrequency is
used to update the frequency, �s, that appears in the self-
consistent susceptibility Eq. �21�. Im��s� nevertheless re-
mains negative after the convergence of Re��s� is reached.
As a result, the Bloch-mode solution for very weak pumping
is a transient solution that decays exponentially to zero. In
order to obtain a nontrivial solution with a purely real output
eigenfrequency, it is necessary to increase the pump param-
eter � and obtain a self-consistent field amplitude �s

�r��.
This self-consistent iterative determination of both the field
amplitude and the �real� eigenfrequency �s is described be-
low.

If the incoherent pumping � exceeds a certain threshold,
the overall susceptibility given by Eq. �21� amplifies the
wave rather than absorbing it. Formally this appears as an
output eigenfrequency with a converged real part and a posi-
tive imaginary part. Since amplification is provided by ex-
cited atoms, growing modes for the least pumping � are
those closest to the atomic resonance frequency �0s. This
growth can be offset by increasing �s

�r�� until it leads to a
self-consistent eigenmode with a purely real output eigenfre-
quency. As it turns out, nonlinear eigenmodes �real self-
consistent output frequency� can be generated �with suffi-
cient pumping� for any choice of �0s.

For illustration, we consider in detail the situation when
the resonance frequency of the dopant atoms occurs at a
photonic band edge. The condition that the imaginary part of
the output eigenfrequency equals zero requires that we itera-
tively modify the field amplitude Eq. �18c�. When the eigen-
frequency converges to a real self-consistent steady state
solution, the corresponding mode amplitude exhibits a
thresholdlike behavior as a function of incoherent pumping,
reminiscent of a laser input-output relation. The field Eq��r� , t�

FIG. 6. �Color online� �a� Schematic graph of the imaginary part
of the susceptibility of the pumped erbium ions. The frequency of
the band edge �drawn in �b�� is detuned by �=��0s, where ��0s is
the FWHM of the resonance curve, from the resonance frequency
�0s=0.266 323 �	0=1535 nm� of the Er3+ ions. �b� The response
of the pumped erbium ions is drawn on top of the photonic
band structure of the square lattice of silicon cylindrical rods
�r=0.3a ,�a=12.1� in glass matrix ��b=2.1�. The ions absorb the
pump power resonantly at �ps=0.276 364 �	p=1480 nm�. The fre-
quency of 4I13/2→ 4I15/2 transition is situated slightly ��=��0s�
within the first band gap by choosing a=409 nm. The frequency of
4I11/2→ 4I15/2 transition is well within the second band gap, and
may be an effective factor in suppressing the excitation lost by
upconversion for the excited dopant atoms at high field amplitudes.
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of a given Bloch vector q� �band index suppressed� may be
regarded as quasimonochromatic with frequency ���q�

��R+ i�I �with �I��R�. The coefficients fq� ,l comprising
this mode �Eq. �5�� are determined by solving Eq. �15� self-
consistently as described in Sec. IV B. At each intermediate
stage of the iterative process �prior to self-consistency�, we
may write

Eq��r�,t� = 1
2 	A�q��r��e−i��R+i�I�t + A*�q�

*�r��ei��R−i�I�t
 , �22�

where

�q��r�� = �
l

fq� ,l�q� ,l�r�� , �23�

�q� ,l�r�� are eigenfunctions of the BPC, and A is the amplitude
to be iteratively determined.

The field Eq��r� , t� in Eq. �22� can be written as Eq��r� , t�
�E�R

�r� , t�cos��Rt−��, where

E�R
�r�,t� � Ae�It�q��r�� �24�

increases or decreases very slowly with time �quasimono-
chromaticity�. By identifying �Ra /2�c��s and comparing
to the classical expression for the electric field used in deriv-
ing Eq. �18a�, E�R

�r� , t� is the amplitude leading to the Rabi
frequency Eq. �18c�. In Eq. �24�, both A and �q��r�� may
change from one iteration to the next.

For physical interpretation purposes, it is useful to relate
this amplitude to “the number of photons, nph, per two-
dimensional unit cell V0 and per unit height b.” In the fol-
lowing nph is referred to as simply “the number of photons
per unit cell,” where the unit cell is to be understood as V0
�b. By integrating the time averaged electric energy density
UE�r� , t� ��I��R� over the 3D unit cell we obtain

nph =

b�
V0

d2rUE�r�,t�

��R
. �25�

The detailed relationship between the cycle averaged electric
field energy density and the electric field amplitude Eq. �22�
for a frequency-dependent dielectric function is given in Ap-
pendix B

UE�r�,t� = � 1

8�

����R����
��

�
�R

Eq�
2�r�,t� . �26�

Strictly speaking, this expression for the energy density is
valid provided that the variation of the dielectric constant
with frequency is not too large and accordingly that the
imaginary part of the dielectric constant is relatively small. If
this is not satisfied, the more general expression Eq. �B5�
must be considered. For convenience, we normalize the non-
linear Bloch modes according to the relation

1

V0
�

V0

d2r�q�
*�r��� ����R����

��
�

�R

�q��r�� � 1, �27�

where V0 is the volume of the unit cell. Inserting Eq. �22�
into Eq. �26� and that into Eq. �25� after performing the time
average, we obtain

V0b
A2e2�It

16�
= ��Rnph. �28�

Here, we have used the periodicity of �q��r�� and �R. In case of
frequency-independent dielectric function, Eq. �27� reduces
to the conventional normalization equation �Appendix A, Eq.
�A2��. Using Eqs. �27�, �28�, and �24� we obtain �after con-
verting to SI units�

E�R

2 �r�,t� � A2e2�It�q��r��2 =
4

�0V0b
��Rnph�q��r��2

�29�

with the understanding that the number of photons per unit
cell nph of frequency �R increases if �I�0 and decreases if
�I�0, and �q��r�� is normalized according to Eq. �27�. In
what follows we refer to the number of photons per unit cell,
nph, rather than the electric field amplitude in our iterative
self-consistent field method to obtain a real output eigenfre-
quency.

We introduce the position and frequency-dependent mode
intensity

I�s
�r�� � nph

2d2�0s

��c�0ab


1
2

�� + 1�
�q��r��2, �30�

where �s��Ra /2�c, and rewrite Eq. �18a� as

�̄dop�r�,�s� = g0
��s − �0s�
2 − i

1 + ��s − �0s�2
2
2 + I�s

�r���s�0s
−1�a�r�� .

�31�

Population inversion of the dopant atoms is likewise po-
sition dependent and is given by �47,52�

w�r�� =
1 + ��s − �0s�2
2

2

1 + ��s − �0s�2
2
2 + I�s

�r���s�0s
−1

�� − 1�
�� + 1�

. �32�

The averaged population inversion is given by the formula
w̄=1/V0d�V0d

d2rw�r�� where V0d represents the part of the
volume of the unit cell doped with active atoms.

B. Self-consistent method

We now outline the complete iterative process to obtain
an exact self-consistent Bloch-mode solution to the nonlinear
wave equation �Eq. �15�� in the strongly scattering photonic
crystal doped with two-level atoms and with some back-
ground loss. This consists of three stages.

�1� As in the linear wave equation problems of Secs. III
and IV, we begin by calculating the band structure of BPC
with the “dopants switched off” ��̄dop�r� ,�s��0� and no
background loss ��̄loss�r���0�. Here the BPC is defined as
that part of the entire dielectric profile which is linear and
frequency independent. It may include the region where the
resonant doping constituents will later be introduced. For
each Bloch vector and band, �q� ,n�, we calculate the eigen-
frequency and the field distribution using our integral equa-
tion formalism. They are the same as if found with PWE
calculations. The BPC Bloch modes are normalized accord-
ing to Eq. �27�.
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�2� For simplicity, we consider all dopant atoms to have
the same resonance frequency, �0s. This remains fixed
throughout the calculation. In other words, homogeneous
line broadening of the atomic transition is assumed to be
dominant compared to inhomogeneous line broadening. The
dielectric constant of the BPC is then supplemented by the
contribution from the dopant atoms �Eq. �31�� and back-
ground loss �Eq. �34��. We now choose a particular incoher-
ent pumping level �, and particular �q� ,n� at which we wish
to obtain a self-consistent nonlinear Bloch wave. The suscep-
tibility of the dopant atoms in iteration m+1 is obtained by
inserting the real part Re��s,m� of the output frequency and
the normalized Bloch mode �defined through Eqs. �23� and
�27� of that particular �q� ,n� position, obtained in iteration m.
For the initial guess, we choose an infinitesimal number of
photons per unit cell, nph=5�10−6 and enter this choice into
Eq. �30�. We then solve the integral equation �15� iteratively
until the real part of the output frequency �s,m+1 converges to
�s,m. We normalize the output Bloch mode Eq. �23� in ac-
cordance with Eq. �27� in every iteration step. The condition
for the convergence in step 2 is that Re��s,m+1�−Re��s,m�
�10−14. However, the solution obtained in stage 2 is not
necessarily an eigenmode of the system �which by definition
is a steady state solution with purely real eigenfrequency�. To
obtain a true eigenmode it is necessary to converge to a
self-consistent field amplitude in which the imaginary part of
the output frequency is also zero.

�3� After the convergence of the real part of the mode
frequency is achieved in stage 2, the imaginary part of the
output frequency may be nonzero due to absorption and
emission of light from the dopant atoms and the background
loss. Such a solution is not a self-consistent, steady state
solution of Maxwell’s equations. In general, this is only a
transient state that decays to zero or evolves into a different
type of mode. If Im��s,m+1��0, the output mode decays ex-
ponentially to zero. This suggests that for the chosen inco-
herent pumping level �, the only self-consistent, steady state
solution is zero. In order to find a nontrivial solution, we then
increase the pumping level incrementally and repeat the pro-
cedure described in stage 2. For sufficiently strong incoher-
ent pumping, the output frequency of stage 2 �with con-
verged Re��s,m+1�� exhibits a positive imaginary part
�Im��s,m+1��0�. In this case, a steady state nonlinear eigen-
mode may be found by increasing the number of photons per
unit cell, nph, appearing in Eq. �30�. After increasing the
number of photons per unit cell, we repeat the iterative pro-
cedure �described in stage 2� now with a new convergence
criterion: both Re��s,m+1�−Re��s,m��10−14 and
Im��s,m+1��10−14 must be satisfied for the iteration to stop.
In practice about 50 iterations are required in steps 2 and 3.

Convergence reached in stage 3 yields a final, self-
consistent number of photons per unit cell, nph, required to
produce a self-consistent Bloch wave with purely real fre-
quency. We refer to this steady state Bloch wave in the com-
plex, nonlinear dielectric medium as a nonlinear eigenmode.

In practice, a modified iterative procedure �described be-
low� is useful to treat strong nonlinearities and high dopant
concentrations. The modification consists in changing the
initial conditions in stage 2. In particular, the iteration is

initialized using a photon number per unit cell and field con-
figuration obtained from the converged nonlinear Bloch
wave of a smaller incoherent pumping level. This modified
iterative procedure overcomes convergence problems in
stage 2 that occur for strong coupling situations involving
colloidal quantum dots �see Sec. VI C�.

VI. APPLICATION OF THE NONLINEAR
EIGENMODES METHOD

In this section, we consider three specific models of reso-
nantly doped photonic crystals corresponding to successively
larger perturbations of the backbone PC and varying degrees
of background loss. In each case, we demonstrate the occur-
rence of self-consistent nonlinear Bloch waves with purely
real eigenfrequency for sufficient pumping.

A. Erbium doped silica-silicon PC

Consider doping the PC with triply ionized erbium atoms
Er3+ with a volumetric concentration NT�1.0�1019 cm−3 in
a glass matrix surrounding silicon rods as shown in Fig. 1�a�.
In order to position the resonance frequency of 	0
=1535.8 nm of the erbium atoms within the first band gap
and one FWHM away from the band edge of the second
band at the X point �Fig. 6 top�, we choose a photonic crystal
lattice constant a=409 nm �Appendix C�. The unit height in
the direction out of plane of the periodicity is taken as b=a.

Results of our self-consistent method are presented in Fig.
7. For a background loss 4��̄loss= i10−6, there is a threshold
incoherent pumping level ��th�1.053�, beyond which self-
consistent, nonlinear Bloch waves appear in the second band
at q� =X point. The threshold pumping �th increases with the
detuning of the BPC eigenmode frequency from the reso-
nance frequency of the dopant atoms while the resonant fre-
quency remains inside the band gap as shown in Fig. 8. As
expected, the threshold, �th, increases as the background loss
�̄loss increases �Fig. 12�, and decreases as the volumetric con-
centration NT of the dopant atoms increases. We observe that
beyond a background loss of 4��̄loss� i4.5�10−5, for fixed
NT=1.0�1019 cm−3 and quantum dot detuning from the
X-point band edge, there are no self-consistent solutions tran-
sition threshold ��th→��. In other words, when the back-
ground loss is too large, there are no nonlinear Bloch waves
in the system. This occurs when loss is only roughly 12%
of gain �loss/gain ��Im��̄loss�Aloss� / �Im��̄dop�Adop��0.12 for
Aloss=�r2=��0.3a�2 , Adop=a2−Aloss , g0�5.92�10−5, and
one FWHM detuning�.

For 4��̄loss� i10−5 and below the threshold �th�1.053,
the solutions to Maxwell’s equation with Bloch vector q� =X
point are transients that decay to zero with time �Fig. 7�d��.
Above the threshold, a nonlinear Bloch wave with real fre-
quency emerges that clamps to a value �s�0.266 400 7 de-
spite further increases in the pumping power. As shown in
Fig. 7�c�, the self-consistent nonlinear eigenmode frequency
is shifted by about 0.2 GHz from the band edge at �s
�0.266 401 of the undoped BPC. The number of photons
per unit cell increases almost linearly with the pump param-
eter above the threshold as shown in Fig. 7�a�.
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In Fig. 9 we show the expansion coefficients, by which
the self-consistent nonlinear Bloch wave at the X point of the
second band is represented in the basis of eigenmodes of the
BPC �silicon-silica undoped photonic crystal�. Most coeffi-

cients are very small as expected because the overall pertur-
bation is very weak. For illustration we plot in Fig. 10 the
absolute value of the electric field for some of the eigen-
modes of the BPC that are coupled to the active atoms. The
evolution of the self-consistent nonlinear Bloch wave, as the
pumping � is increased, is shown in Fig. 11. Since the per-
turbation is very weak, the nonlinear Bloch wave resembles
the BPC eigenmode. We draw the absolute value of the dif-
ference of the electric field between the nonlinear Bloch
wave and the BPC eigenmode at the X point �second band�
for various pumps �.

In Fig. 12 we show how the number of photons per unit
cell, nph, varies with the pump parameter, for different losses
in silicon rods while the resonance frequency of the two-
level atoms is kept fixed at one FWHM away from the
X-point band edge.

In Fig. 13 we show how the number of photons per unit
cell, nph, varies as the resonance frequency of the two-level
atoms is positioned at different scaled frequencies. We ob-
serve that the transition threshold is the smallest for the

FIG. 7. �Color online� Photonic crystal of Fig. 1�a�, with lossy
silicon rods �4��̄loss= i10−6� and dopant erbium ions under pump-
ing �. Shown are �a� the number of photons per unit cell, nph,
corresponding to the self-consistent field of the second band at the
X point, �b� average inversion w̄ of the dopant atoms, �c� the real
part of the frequency of the second band at the X point, and �d� the
imaginary part of the frequency of the second band at the X
point—as functions of the pumping parameter �.

FIG. 8. Threshold pump �th increases as the resonance fre-
quency of the erbium ions is moved deeper into the band gap. The
detuning � of the resonance frequency of the erbium ions from the
band edge is measured in terms of the FWHM, ��0s, of that
resonance.

FIG. 9. �Color online� Coupling coefficients 	hq� ,l
 for q� at the X
point and the second photonic band of the doped BPC as the pump
parameter is increased and the convergence is reached.

FIG. 10. �Color online� The absolute value of the electric field
of Bloch modes corresponding to bands 2, 6, 8, 12, and with the
Bloch vector ending at the X point of the Brillouin zone are drawn.
The white dashed lines show the dielectric boundaries.
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X-point band edge. The rate of increase �average slope� of
the number of photons per unit cell with pumping is very
sensitive to the positioning of the resonance frequency as
shown in the inset of Fig. 13�b�. In calculating the average
slope we have gone up to a pump �=32.1.

In Fig. 14 the converged self-consistent field modifica-
tions at the four q�-points labeled in Fig. 13�b� are drawn for
a pump value of �=12.1. The nonlinear modification of the
BPC field for the second band and Bloch vectors q�
=2,15�X point�, and 44 is small in comparison with the
order of unity modification of the BPC field at q�
=30�M point�. Due to the degeneracy of the modes at q�
=30, it is possible for the dopant atoms to scatter light be-
tween the degenerate modes �bands 2 and 3� at the M point,
resulting in a large overall change in the field pattern.

FIG. 11. �Color online� If the normalized nonlinear Bloch field
obtained at the end of the convergence procedure, step 3 �as de-
scribed in Sec. V� is drawn for different values of the pump param-
eter ��=1.053—at the threshold, 1.103—above threshold, 2.000—
well above threshold�, a very minor change from the eigenmode of
the backbone photonic crystal can be observed. Nevertheless the
absolute value of the difference of the normalized fields with the
BPC eigenmode, for different pumps, reveals the differences. The
absolute value of the difference of the normalized nonlinear Bloch
field with the BPC eigenmode �upper left picture� for �=1.053 �up-
per right picture�, �=1.103 �lower left picture�, and �=2.000 �lower
right picture� has a small magnitude of the order of 2�10−5. The
white dashed lines show the dielectric boundaries.

FIG. 12. �Color online� Dependence of the threshold for the
pump parameter and the slope of the number of photons per unit
cell versus the pump parameter, when the losses are varied.

FIG. 13. �Color online� �a� The resonance frequency of the ho-
mogeneously broadened transition of two level atoms is positioned
at different frequencies of the second band of the backbone photo-
nic crystal. �b� Transition threshold for the pump parameter and the
slope of the dependency of the number of photons per unit cell
versus the pump parameter differs for different positioning of the
resonance frequency with regard to the second band. Average slopes
are calculated at 45 points �15 Bloch vectors per each direction�
around the boundaries of the first Brillouin zone. For clarity, only
four slopes, corresponding to the resonance frequency positioned
close to � points �q� =2,44� and exactly at the X and M band edges
�q� =15,30�, are drawn. The inset shows how the slopes of the pho-
ton number per unit cell versus pumping vary as the resonance
frequency is positioned on the boundary of the first Brillouin zone.
The singularity and therefore the numerical accuracy of the calcu-
lations at the � point may explain why the slopes there show
discontinuities.

FIG. 14. �Color online� This picture complements the inset of
Fig. 13�b�. Backbone photonic crystal fields for the second photonic
band and Bloch vectors 2, 15, and 44 are drawn in the first column.
The respective absolute values of the difference of the electric vec-
tor of the converged fields under pump �=12.1 with the electric
vector of the BPC is drawn in the second column.
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As described in standard textbooks ��47�, p. 307� the
minimum optical pumping power density necessary to estab-
lish the threshold inversion is given by

�Pwr/V�th = �V0d/V0���p�N1�thRth,

where �N1�th is the number of the dopant atoms in ground
level at threshold pumping, Rth is the rate of pumping at
threshold, V0d /V0 is the volume fraction of the active region
of the PC unit cell, and �p is the optical pumping frequency
to the third atomic level, from which there is a rapid decay to
the second level situated at �0s. Using N1=NT / �1+RT1�
where NT is the volumetric concentration of the resonant
two-level systems �valid for negligible values of stimulated
emission� we obtain a threshold optical pump power density
of roughly 6.7�10−11 W/�m3 for the emergence of nonlin-
ear Bloch waves in this “weak coupling” system of erbium
light emitters. As expected, the pump power required to
reach the threshold is inversely proportional to the popula-
tion decay time T1. For 3D PC, and the resonance frequency
of the dopant atoms situated within the complete PBG but
coupled to a single mode wave guide, the decay rate T1

−1 may
be reduced drastically. In this case, the pump power required
to establish a steady state nonlinear Bloch wave in an erbium
doped PBG microchip wave-guide channel may be corre-
spondingly reduced.

B. Thin coating shell of colloidal quantum dots in silicon PC

As a second illustration, we consider a photonic crystal
consisting of a square array of vertical air pores of radius r
=0.45a �where a is the side of the square unit cell� etched
onto a silicon matrix. As a radiative system embedded in the
BPC we consider quantum dots, coating the inner surfaces of
the air pores, forming a shell of thickness �=0.04a, as shown
in Fig. 1�b�. The dielectric constant �c=6.0 represents the
frequency-independent part of the dielectric function of the
quantum dots. Quantum dots are considered to be spheres of
diameter 5 nm, encapsulated with a polymeric capping group
�spherical shell� of thickness 2 nm that prevents adjacent
dots to touch each other. The volumetric density �calculated
for a fcc close packing of encapsulated quantum dots� is
NT�9.7�1017 cm−3 �see Appendix D�.

Specific physical realizations of this system include PbS
and PbSe colloidal quantum dots �55�. We assume that the
resonance wavelength of the quantum dots is 	0=1.55 �m,
with homogeneous line broadening �	 /	0�0.17%. We ne-
glect inhomogeneous line broadening in order to simplify the
illustration and the computation. The separation of 4 nm en-
sured by the capping groups prevents direct charge transfer
between adjacent dots. The frequency-dependent part of the
dielectric function of the ensemble of quantum dots is given
by

�̄coat�r�,�s� = g0
��s − �0s�
2 − i

1 + ��s − �0s�2
2
2 + I�s

�r���s�0s
−1�c�r�� ,

�33a�

where

�c�r�� = �1, for r� pointing within the coating,

0 otherwise.
�

�33b�

The other parameters of Eq. �33a� are 
2=5.1�103, g0
=0.44��−1� / ��+1�, I�s

�r��=nph1.75�10−2 /�0s
3 ��+1��q��r��2

where nph is the number of photons per unit cell and � is the
pump parameter �see Appendix D for details of the choice of
parameters�. The FWHM of the gain spectrum is ��0s
=2/
2=0.0004. We situate the resonance frequency of quan-
tum dots within the first band gap which extends from �s
=0.223 24 �first photonic band, M point� to �s=0.243 21
�second photonic band, X point�, one FWHM away from the
X-point band edge, at a scaled frequency �0s=0.2428 as
shown in Fig. 15. This is implemented by choosing the lat-
tice constant a�370 nm and the thickness of the quantum
dot coating shell �15 nm �roughly two layers of quantum
dots are coating all the inner surfaces of the silicon micro-
structure�. In addition we include a distributed background
loss, outside the colloidal quantum dot coating layers,
through the background susceptibility

�̄loss�r�� = i
10−4

4�
�1 − �c�r��� . �34�

In our present calculation we chose a value of T1
−1 corre-

sponding to an ordinary �nearly featureless� electromagnetic
density of states. We set T1=1 ns in accordance with the
observed Auger recombination time scale in quantum dots
�56�. The close proximity of the resonance frequency to the
band edge offers the possibility of substantial gain and 2D
distributed feedback. This is sufficient to overcome other
losses �represented by �̄loss� and sustain nonlinear Bloch
waves with purely real frequency.

Results of our modified self-consistent iterative method
are presented in Fig. 16. The threshold incoherent pumping
is �th�1.008. Below the threshold, the solution to Maxwell’s
equation with Bloch vector q� =X point is a transient that
simply decays to zero �Fig. 16�d��. Above the threshold, a
nonlinear Bloch wave with real frequency emerges and
clamps to a frequency �s�0.243 19 despite further increases
in the pumping power. The number of photons per unit cell
increases almost linearly with the pump parameter above the
threshold as shown in Fig. 16�a�. A rough estimate of the
average electric field intensity of the nonlinear Bloch wave is
E�2.1�nph�s /na2�103 V/cm, where �s is the scaled fre-
quency of the nonlinear Bloch wave, nph is the number of
photons per unit cell, n is the average refractive index of the
unit cell, and a is the side of the unit cell in �m. In particu-
lar, we get E�1.9�103 V/cm for nph�1, a=0.37, �s
�0.241 85, and n�4. In our calculations, the iteration pro-
cedure of the third step is terminated after 60 iterations if the
convergence criterionn Im��s,m+1��10−14 �see Sec. V� is
not reached. In practice, we reach a level of convergence for
the imaginary part of frequency of the Bloch wave of only
Im��s,m+1��10−7 for some pump values. As expected, the
threshold �th increases as the background loss �̄loss increases
as can be seen from Fig. 17.
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C. Thick coating shell of colloidal quantum dots in silicon PC

Finally we consider of situation where the dopants consti-
tute a relatively large perturbation of the original BPC. We
consider the same situation as in the previous subsection but
now the thickness of the shell of quantum dots is �=0.12a,
as shown in Fig. 1�c�. For the BPC of Fig. 1�c� a very small
band gap ��1% of the center frequency� extends from �s
=0.2186 �first photonic band, M point� to �s=0.2209 �sec-
ond photonic band, X point� as can be seen in Fig. 18. We
situate the resonance frequency of quantum dots in the center
of the band gap at the scaled frequency �0s=0.2197. This
situation is achieved using a photonic crystal with a lattice
constant a�341 nm. The resonant part of the dielectric func-
tion of the quantum dots is given by Eqs. �33a� and �33b�,
with parameters �0s=0.2197, 
2=5100, g0=0.44��−1� / ��
+1�, I�s

�r��=nph1.76�10−2 /�0s
3 ��+1��q��r��2 where nph is

the number of photons per unit cell, and � is the pump pa-
rameter �see Appendix D�. In addition we include a distrib-
uted background loss, present everywhere in the unit cell
except the coating shell, through the background susceptibil-
ity

�̄loss�r�� = i
5 � 10−4

4�
�1 − �c�r��� . �35�

FIG. 15. �Color online� �a� The BPC photonic band structure for
the case of Fig. 1�b�. A band gap for the E-polarized fields extends
from �s=0.2232 �first photonic band, M point� to �s=0.2432 �sec-
ond photonic band, X point�. �b� The coating shell of Fig. 1�b� has
a susceptibility �̄coat��s� defined by Eq. �33a� with coefficients
�0s=0.2328, 
2=5100, g0=0.44 �infinite pumping�. The real �solid
blue line� and the imaginary �dotted green line, plotted close to the
real part for clarity� part of the susceptibility of the ensemble of
quantum dots are drawn for the very weak field. Two additional
lines represent the frequencies of the first band for the M point
�dash-dotted black line� and the second band for the X point �dashed
red line�, respectively, as the dielectric constant of the coating shell
is varied.

FIG. 16. �Color online� �a� The number of photons per unit cell
nph, �b� average inversion w̄ of the dopant atoms, �c� the real part of
the frequency of the second band at the X point, and �d� the imagi-
nary part of the frequency of the second band at the X point—as
functions of the pumping parameter �.

FIG. 17. �Color online� Threshold and photon density behavior
as the background loss is varied. 156 lowest �in frequency� plane
waves of the BPC are considered coupled from the spatial distribu-
tion of the resonant colloidal quantum dots and the background
loss.
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In Fig. 19, the real part of the susceptibility of the en-
semble of quantum dots is drawn for two values of the pump
�=1.2 and 2.0 and for very weak fields. The unmodified
iteration procedure of stage 2 �described in Sec. V� exhibits
convergence problems because the slope of the real part of
the susceptibility �for very weak fields� is large compared to
the slope of the band edge at the X point �dashed red line�. In
this situation of large imaginary parts of the resonant suscep-
tibility, it is problematic to define a normalization for the
electromagnetic field for certain frequency and pump re-
gions. The expression ����R���� /�� as defined in Eq. �B5�
is negative for very weak fields, indicating a breakdown of
the approximation leading from Eq. �B5� to Eqs. �B6�–�B8�.
For such large imaginary parts of the dielectric response, the field is no longer quasimonochromatic. In this case, we must

either use the exact relation Eq. �B5� to obtain the electro-
magnetic energy density or we must use the modified itera-
tion scheme alluded to at the end of Sec. V. We choose the
latter option.

Using the modified iteration procedure, the normalization
�Eq. �27�� is successful and self-consistent, nonlinear, Bloch
waves are obtained. In practice, the iteration procedure of the
modified stage 2 is terminated after 15 iterations if the con-
vergence criterion Re��s,m+1�−Re��s,m��10−14 is not
reached and the iterative procedure of stage 3 is terminated
after 60 iterations if Im��s,m+1��10−14 �see Sec. V� is not
reached �usually the convergence criterion on Re��s,m+1�
−Re��s,m��10−14 in stage 3 is met�. This “slow” conver-
gence sometimes occurs for strong active medium–field in-
teraction and strong background loss. In such cases, we relax
the convergence criterion slightly.

In Fig. 21 the growth of the number of photons per unit
cell, nph, as the pump is increased is slower than of the thin
coating layer represented in the previous section. The reason
is that the resonance frequency of the quantum dots was
chosen further from the band edge and the background loss
was chosen higher than those for the thin coating. In Fig. 22
the normalized eigenmode for the second band at the X point
is drawn for three different values of the pump �: exactly at
threshold, just above threshold, and well above threshold.
The normalized nonlinear Bloch waves do not exhibit sig-
nificant difference from the normalized Bloch eigenmode of
the backbone photonic crystal �BPC� at the same band and

FIG. 18. �Color online� Photonic band structure of the
E-polarized field in the BPC with unit cell as shown in the gray
scale inset. A tiny band gap extends from �s=0.2186 �first photonic
band, M point� to �s=0.2209 �second photonic band, X point�. The
absolute value of the electric field for the normalized Bloch eigen-
modes is drawn for three first bands at points X and M of the first
Brillouin zone.

FIG. 19. �Color online� The shell formed from quantum dots
coating the inner surfaces of the air pores, shown in Fig. 1�c�, has a
susceptibility �̄coat��s� defined by Eq. �33� with coefficients �0s

=0.2197, 
2=5100, g0=0.44��−1� / ��+1�. The real part �solid blue
line� and the imaginary part �dotted green line, shifted close to the
real part for clarity� of the susceptibility of the shell of quantum
dots are drawn for pump �=1.2 and nph=0. The real part of suscep-
tibility is drawn �solid gray line� for another pump value, �=2.0 and
nph=0. Two additional lines represent the frequencies of the first
band for the M point �dash-dotted black line� and the second band
for the X point �dashed red line�, respectively, for a frequency in-
dependent BPC, as the dielectric constant of the coating shell is
varied.

FIG. 20. �Color online� The spatial normalization of the quasi-
monochromatic electromagnetic field, as defined in Eq. �28�, re-
quires a positive value for the function ����R���� /�� �see Eq.
�C5��. This function is plotted above for the case of very weak fields
�nph�0� and pump values �=0, 1.2, and 2. The red vertical line
represents the frequency position �roughly� of the second band at
the X point. As shown in this graph, the normalization of the band
edge field may not be performed for very weak fields and pumps
above a certain value, due to ����R���� /�� being negative. This
problem is overcome using the modified iteration procedure.
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Bloch vector. However a plot of the absolute value of the
difference of the normalized field with the BPC eigenmode
reveals the modification of the eigenmode due to nonlinear
interaction. As seen in Fig. 22, the mode structure modifica-
tion is roughly 0.1% from that of the BPC. In Fig. 23, we

plot the number of photons per unit cell, nph, in the self-
consistent, nonlinear Bloch wave, near threshold for the two
band edges, and for the loss given by Eq. �35�. The reso-
nance frequency of the quantum dots was placed exactly half
way between X and M band edges. Clearly, the upper band
edge exhibits a nonlinear Bloch wave for a lower pumping
threshold than the lower band edge. In Fig. 24, we plot the
growth of the photon number per unit cell in self-consistent
nonlinear Bloch waves �with real eigenfrequency� for vari-
ous choices of the background loss. As the loss is reduced,
the threshold for steady state, nonlinear Bloch waves de-
creases, and the rate of increase of photon number per unit
cell with pumping increases dramatically.

VII. DISCUSSION

In this paper, we have demonstrated the existence of non-
linear waves, satisfying Bloch periodicity, with purely real
eigenfrequency, in strong scattering photonic crystals exhib-
iting both loss and gain. We have delineated detailed charac-
teristics of these modes for a model of rare-earth atoms dop-
ing of the solid region and for models of the colloidal
quantum dot infiltration within the void regions of 2D PCs.
Below a threshold pumping level of the two-level radiators,
determined by the losses in the system, there are only tran-
sient extended modes in the photonic crystals. Localized or
solitary wave solutions may nevertheless exist �57� under

FIG. 21. �Color online� �a� The number of photons per unit cell
nph, �b� average inversion w̄ of the dopant atoms, �c� the real part of
the frequency of the second band at the X point, and �d� the imagi-
nary part of the frequency of the second band at the X point—as
functions of the pumping parameter �.

FIG. 22. �Color online� The absolute value of the difference of
the normalized nonlinear Bloch field for �=1.068 �upper right pic-
ture�, �=1.1 �lower left picture�, and �=1.2 �lower right picture�
with the BPC eigenmode �upper left picture� has a small magnitude
of the order of 10−3. The white dashed lines show the dielectric
boundaries.

FIG. 23. �Color online� Transition threshold for the number of
photons per unit cell, nph, occurs for a lower pump power at the
upper band edge �X point�.

FIG. 24. �Color online� Dependency of the threshold for the
pump parameter and the slope of the number of photons per unit
cell versus the pump parameter, when the losses are varied.
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suitable conditions and need to be investigated separately.
Above the pumping threshold, nonlinear �extended� Bloch
waves exist, analogous to Bloch modes in a linear photonic
crystal. Unlike linear Bloch modes, the nonlinear Bloch
waves are characterized by a specific amplitude �number of
photons per unit cell� for each choice of the pump parameter.
This nonlinear wave amplitude exhibits a laserlike input
�pump�—output characteristics. Unlike band edge lasing ob-
served in various photonic crystals �58�, these nonlinear
Bloch waves may occur throughout the spectrum of the pho-
tonic crystal and are not restricted to special spectral regions
of vanishing photon group velocity. This suggests that, in
general, losses in photonic crystals may be offset by the in-
troduction of regions of gain to yield propagating as well as
stationary Bloch waves throughout the photonic band struc-
ture. Although we have presented detailed results for only
2D bulk photonic crystals, similar nonlinear Bloch waves
arise in 3D PBG systems and effectively 1D periodic sys-
tems. A particularly interesting example of the latter is a 1D
waveguide embedded in a higher-dimensional photonic crys-
tal. In this situation, losses within the waveguide may be
compensated by incorporating active regions beside the
waveguide. Likewise, our method may provide a more exact
computational tool for describing laser activity in strongly
scattering 1D distributed feedback lasers that have been tra-
ditionally �23,24� described by a more approximate set of
coupled mode equations.

Our self-consistent iterative method for obtaining nonlin-
ear Bloch wave solutions represents an important generaliza-
tion of previously developed methods to treat photonic crys-
tals with a frequency-dependent dielectric function. Our
method enables the precise, quantitative treatment of
strongly scattering PCs and PBG materials with a nonlinear
and complex dielectric function. Two important extensions
of the present work are the nonlinear media with an inhomo-
geneously broadened collection of resonators and to materi-
als in which the dielectric constant is negative in some re-
gions. For example, a metallic photonic crystal filament
exhibiting quasithermal light emission �26,27� can be mod-
eled as an inhomogeneously broadened collection of emitters
with a very broad range of emitters. While such a medium
exhibits very strong �blackbody� absorption loss, periodically
structured metals may exhibit isolated pass bands �37�,
where light at frequencies below the bulk plasma cutoff fre-
quency can propagate through a connected network of �air�
holes. Modes within such pass bands may suffer minimal
loss but at the same time can be excited by thermal emitters
within the solid fraction of the filament. The excitation of
nonlinear Bloch waves in such a pass band would have dra-
matic implications for quasithermal light emission when the
system is driven slightly out of thermodynamic equilibrium.
A second example where nonlinear Bloch waves might be
generated is in materials with intrinsic loss. Here the incor-
poration of gain in specific parts of the unit cell can offset
these losses. In left-handed metamaterials �59,60� both nega-
tive dielectric constant and negative magnetic permeability
are present. When this is associated with a resonance, a sig-
nificant imaginary part of the susceptibility appears, leading
to losses. In the near-infrared spectrum, the best available
materials �61� exhibit a ratio of real part to imaginary part of

the dielectric constant of order unity. It is, in principle, pos-
sible that the doping of such systems with gain material
could offset these intrinsic losses. Here �61�, the scale of
periodicity is slightly below 400 nm for an operating wave-
length of 1.4 �m. It is possible that nonlinear Bloch waves
could be generated, even at long wavelengths compared to
the lattice constant, provided that the gain regions of each
unit cell are pumped. The compensation of losses with gain
and the emergence of undamped nonlinear Bloch waves may
provide otherwise unattainable practical applications for a
variety of materials of this nature.
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APPENDIX A: NORMALIZATION OF EIGENMODES
FOR THE BACKBONE PHOTONIC CRYSTAL

In this Appendix we derive the normalization parameter
�k� ,l for a Bloch mode of the backbone photonic crystal with
Bloch wave vector k� and band index l. From Eq. �1� where
we set ���r���0, and by using E��r��=eik�r�u�r�� with u�r��
=�G� �ũ�G� ��eiG� �r� a periodic function of the direct lattice
�Bloch’s theorem �5�� we obtain

�
G�

�
G� �,G�
−1 �k� + G� �2ũ�G� � =

�2

c2 ũ�G� �� . �A1�

The solutions 	�k� ,l�r��
 of the Hermitian equation �Eq. �A1��,
corresponding to eigenvalues 	�k� ,l
, form a complete set of
functions in the Hilbert space of Eq. �1�. �k� ,l�r��
= �eik�r� /�k� ,l�uk� ,l�r�� and we choose the normalization constant
�k� ,l of the Bloch function �k� ,l�r�� to be real and such that

1

V0
�

V0

d2r�k� ,l
* �r����r���k� ,l�r�� = 1. �A2�

Using uk� ,l�r��=�G� �ũk� ,l�G� ��eiG� �r� and �V0
d2reiG� r�=V0�G� ,0 we

obtain

�
G� �

ũk� ,l
* �G� ����

G� �

�G� �−G� �ũk� ,l�G� ��� = �k� ,l
2 . �A3�

From Eq. �2� we can obtain

�k� + G� ��2ũk� ,l�G� �� =
�k� ,l

2

c2 �
G� �

�G� �−G� �ũk� ,l�G� �� . �A4�

Inserting Eq. �A4� into Eq. �A3� we obtain

�k� ,l =

��
G�

�k� + G� �ũk� ,l�G� �2

�k� ,l/c
. �A5�

APPENDIX B: ENERGY DENSITY AND PHOTON
NUMBER IN FREQUENCY-DEPENDENT DIELECTRICS

In the case of dielectrics with frequency-dependent di-
electric functions, absorption and/or dissipation of the elec-
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tromagnetic field occurs. If the rate of absorption is small
compared to the rate of oscillation of the electromagnetic
field, the energy density of the electromagnetic field is well
defined. The detailed relationship between this energy den-
sity and the field amplitudes, however, are modified by the
frequency dependence of the dielectric function. This energy
density is used in our method to determine the amplitude of
the field under pumping conditions.

We start with Maxwell’s equations

�� � E� = −
1

c

�H�

�t
, �B1a�

� � H� =
4�

c
j� +

1

c

�D�

�t
. �B1b�

Dot multiplying Eq. �B1a� by H� and Eq. �B1b� by E� and then
subtracting them side by side we obtain

− j�E� =
1

4�
�E�

�D�

�t
+ H�

�H�

�t
� + � · S� , �B2�

where the Poynting vector is

S� =
c

4�
E� � H� .

For a single free charge, j�E� =qv�E� =qE� dr� /dt=F� ·dr� /dt
=dW /dt represents the rate of work that the field performs
on the charge. In this view we may interpret Eq. �B2� as The
work done by the free charge distribution on the field �left
side of the equation� is partially stored as energy in the field
�first term of the right side of the equation� and partially
leaves the region as radiation �second term of the right side

of the equation�. Hence we may interpret 1 /4��E��D� /�t

+H� �H� /�t� as the time rate of change of the energy density in
the electromagnetic field. For a frequency-independent di-
electric function the energy density U of the electromagnetic
field is easily obtained

U =
1

8�
��E� 2 + H� 2� . �B3�

For a frequency-dependent dielectric function ���� the
derivation of the energy density requires careful reconsidera-
tion. We write ����=�R���+ i�I���=�*�−��, where �R and �I

are the real and imaginary parts of the �bound charge� dielec-
tric function, respectively, and the Fourier components of the
time-dependent displacement and electric fields are related

by D� �=����E� �. In the presence of a free charge with non-

zero conductivity ���0�, the free current satisfies j�=�E�

�Ohm’s law�. From Eq. �B1b� we get for a single Fourier
component

� � H� � �
− i�

c
�̄���E� �,

where �̄��� is the total frequency-dependent dielectric func-
tion

�̄��� = �R��� + i
4�� + ��I���

�
.

We may interpret �b������I��� /4� as a bound charge con-
ductivity that vanishes in the D.C. limit ��→0�, and

j�b�t� � �
−�

�

�b���E� �e−i�td� ,

may be called the bound current. In the case of absence of
the free currents we rewrite Eq. �B2� as

− j�bE� =
1

4�
�E�

�D�

�t
+ H�

�H�

�t
� + � · S� , �B4�

where now

D� �t� = �
−�

�

�R���E� ���e−i�td� .

Then

E� �t�
�D� �t�

�t
=

1

2

�

�t
� �

−�

�

E� �− ���E� ���
��R��� − ���R����

� − ��

�e−i��−���td��d� . �B5�

Let us suppose that the electric field E� �t� is quasimonochro-

matic, namely E� ����0 only for a small region of frequen-
cies about some carrier frequency �0. This means that the

field E� �t� oscillates with frequency �0 and changes its am-
plitude in a time scale much longer than T=2� /�0. We in-
troduce �=�0+� and ��=�0+� to obtain this contribution,
about �0

lim
�,�→0

��R��� − ���R����
� − ��

�� ����R����
��

�
�0

.

Hence

E� �t�
�D� �t�

�t
�

1

2
� ����R����

��
�

�0

�E� 2�t�
�t

. �B6�

This approximation may break down in situations where the
imaginary part of the dielectric constant and the correspond-
ing frequency derivative of �R��� is too large. In this case the
field is not sufficiently monochromatic and we must retain
the detailed expression �Eq. �B5��. Substitution of Eq. �B6�
into Eq. �B4� gives −j�bE� ��U /�t+� ·S� where

U =
1

8��� ����R����
��

�
�0

E� 2 + H� 2� �B7�

is the energy density of a quasi-monochromatic electromag-
netic field.

For the case of frequency-independent dielectric constant
it is straightforward to show that
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b�
V0

d2rUE�r�,t� = ��nph, �B8�

where V0 is the volume of the two-dimensional unit cell of
the photonic crystal, UE�r� , t�=� /8�E2�r� , t� is the cycle aver-
aged electric field energy density, and nph is the number of
photons per two-dimensional unit cell V0, per unit height b.
We assume that the same expression applies to a frequency-
dependent dielectric function with the modified electric field
energy density appearing in Eq. �B6�.

APPENDIX C: OPTICAL SUSCEPTIBILITY MODEL
FOR Er3+ IN GLASS

1. Dipole moment and relaxation times of transition
for erbium in glass matrix

The Er3+ laser transition has a wavelength 	0
=1535.8 nm ��0=1.95�1014 Hz� �62�. The dipole moment
of the transition defined as d=ez21=e�1z2� is related to the
transition oscillator strength f �8.21�10−7 ��47�, p. 198� by

d = �ez21� = � e2�

2m�0
f�1/2

� 3.15 � 10−32C m.

The coefficient of spontaneous emission �radiative decay� of
erbium ions implanted into a glass �SiO2� matrix ��b=2.1� is
given by �63�

A21 = ��b

d2�0
3

3��0�c3 � 11.2 Hz.

The longitudinal time T1 of the susceptibility �depopulation
time of level 2� toward other levels ��47�, p. 249� is the sum
of spontaneous emission and nonradiative emission rates

1

T1
= A21 + �21. �C1�

From experiments T1�14.4 ms suggesting that the decay
rate of the upper laser level 2� to lower level 1� due to
nonradiative relaxation processes is �21�58 Hz. On the
other side the laser transition of erbium has a Lorentzian line
shape �elastic collisions� of width �FWHM�

��0 � 1.8 � 1011 Hz.

Since the depopulation time is extremely slow, this linewidth
can be interpreted as the dipole dephasing time scale T2
����0�−1�5.6 ps.

2. Parameters for the susceptibility of dopant atoms
in photonic crystal

The scaled frequencies of the photonic crystal are defined
as �s=�a /2�c=a /	 �where a is the lattice constant of the
photonic crystal� and �0s=a /	0. For T1=14.4 ms and T2
=5.6 ps the scaled depopulation time is 
1=2�c /aT1
=2�c /�0s	0T1=1.77/�0s�1013 and the scaled dephasing
time is 
2�2�c /aT2=2�c /�0s	0T2=6.82/�0s�103, where
we used 	0=1535.8 nm. For an atomic density NT
=1019 cm−3 and the parameters d and T2, described above,

the susceptibility strength parameter �Eq. �18b�� is

g0 � 5.92 � 10−5� − 1

� + 1
. �C2�

The FWHM of the amplifying part of the susceptibility of
the dopant atoms, for very weak electric fields �Eq. �19�� is
��0s=2/
2=2.93�10−4�0s. If we wish to place the emission
line 	0 of the dopant atoms within one FWHM away from
the X-point band edge at �s=0.266 401, we require �0s
=0.266 323. This corresponds to a photonic crystal lattice
constant of a=�0s	0=409 nm. Erbium ions may be optically
pumped at a wavelength of 	p=1480 nm corresponding to a
scaled frequency of �ps=0.276 364. The position- and
frequency-dependent intensity of the mode function defined
in Eq. �30� becomes with the help of the above parameters
and b=a , 	0=1535.8 nm

I�s
�r�� = nph

1.16

�0s
3 �� + 1�

�q��r��2. �C3�

3. Normalization of the spatial part of the electric field

Normalization of the spatial part ��r�� of the electric field
is done according to Eq. �28�. The total dielectric constant of
the doped photonic crystal is

��r�,�� = �BPC�r�� + 4��̄�r�,�� + 4��̄loss�r�� . �C4�

In our calculations, we use the expression

����R����
��

= �R�r�,�s� +
4�g0�s
2�1 − ��s − �0s�2
2

2 + I�s
�r����a�r��

�1 + ��s − �0s�2
2
2 + I�s

�r���s�0s
−1�2

�C5�

where, for simplicity, ���r��2 /��s is discarded.

APPENDIX D: SUSCEPTIBILITY PARAMETERS
FOR COLLOIDAL QUANTUM DOTS

We assume that the resonance frequency of the colloidal
quantum dots corresponds to a wavelength 	0=1.55 �m. To
place the resonance frequency of the quantum dots at a
scaled frequency �0s, a lattice constant a=�0s	0 is necessary.
A radius r=4.5 nm for the capped �semiconductor-core ra-
dius 2.5 nm� colloidal quantum dots gives a volumetric con-
centration NT=�2/16r3�9.7�1017 cm−3 if they are fcc
close packed. We assume a dipole moment for the resonant
transition d�2�10−29 C m �11,64�. In addition we assume a
population decay time T1�1 ns �65� giving 
1�5.1�106,
and a dephasing time T2�1 ps giving 
2�5.1�103. The
magnitude of the frequency-dependent part of the suscepti-
bility of the quantum dots is �Eq. �18b��

g0 = 0.44
� − 1

� + 1
. �D1�

The FWHM of the amplifying part of the susceptibility of
the dopant atoms, for very weak electric fields �Eq. �19��, is
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��0s=2/
2=4�10−4. This corresponds to a linewidth of
�	�0.0026 �m centered at 	0=1.55 �m and �	 /	0
�0.17% homogeneous line broadening for quantum dots.

The position- and frequency-dependent intensity of the
mode function defined in Eq. �30� �using d=2�10−29 C m,

T1=1 ns, T2=1 ps, b=a, a=�0s	0, and 	0=1.55 �m� is

I�s
�r�� = nph

1.76 � 10−2

�0s
3 �� + 1�

�q��r��2. �D2�
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